	NAME: _____________
	

	Test 4 – 20 points Total
	DATE: Friday, April 17, 2015

Consider a Barnes and Noble store which sells Books and CD. All Books and CD inherit some features from a parent abstract class InventoryItem.
 InventoryItem
[image: image1.jpg]

 [image: image2.jpg]

Book CD

 a. Write the complete class declaration for the class CD. Keep track of the number of minutes the CD has (this should be in constructor). It will include all necessary instance variables and implementation of its constructors and methods so that it will compile.

b. Consider the following Warehouse class, which stores the list of items in the warehouse inventory in an ArrayList items. Create the method discountAll that will will update items by taking amount of the price of every item that costs greater than minPrice amount.

c. Extra credit: Create a method public void bookSale(double discount) that will update the price of all books (and only books) by discount the current price by discount %. HINT to check to see if item1 (an InventoryItem) is actually a book:
if (item1 instanceof Book)

public abstract class InventoryItem

{

 private int id;

 private String title;

 private double price;

 public InventoryItem (String title, double price)

 {

 id= makeId ();

 this.title = title;

 this.price = price;

 }

 // returns the title of this item

 public String getTitle ()

 {

 return title;

 }

 // returns the price of this item

 public double getPrice()

 {

 return price;

 }

 // returns the price of this item

 public void setPrice(double price)

 {

 this.price=price;

 }

 //returns the info of this item

 public abstract String getInfo ();

 // returns a unique id

 private static int makeId()

 {

 // implementation not shown

 }

}

public class Warehouse

{

 private ArrayList<InventoryItem> items;

 // will update items by taking amount of the price of every item that costs greater than minPrice amount.

 public void discountAll (double minPrice, double amount)

 {

 // to be implemented in b

 }

 //constructors and other methods not shown

 // update the price of all books (and only books) items by discount the current price by discount %.

 public void bookSale(double discount)

 {

 //to be implemented in c

 }

}

